Prüfprotokoll zur Überwachung der Einhaltung von Anforderungswerten bei einmaliger Prüfung nach DIN EN 590:2017-10 – Dieselkraftstoff

Pro	bel	beh	ıält	err	ıum	mer:
-----	-----	-----	------	-----	-----	------

Probenahmedatum:

PLZ:

Nr.	Stoffeigenschaft	Einheit	Prüfverfahren	Ablehnungs- grenzwert		Prüfergebnis
1	Cetanzahl (CFR) ^a		DIN EN ISO 5165:1999	min. 48,5	max.	
1	Getanzani (Or Ti)		DIN EN 15195:2015	49,6		
			DIN EN 16144:2012	48,6		
			DIN EN 16715:2015	50,2		
2	Cetanindex		DIN EN ISO 4264:2007	44,6		
3	Dichte bei 15 °Cb	kg/m³	DIN EN ISO 3675:1999	819,3	845,7	
			DIN EN ISO 12185:1997	819,7	845,3	
4	Polycyclische aroma- tische Kohlenwasser- stoffe	% (m/m)	DIN EN 12916:2016		9,1	
5	Schwefelgehalt ^c	mg/kg	DIN EN ISO 20846:2012		11,3	
			DIN EN ISO 20884:2011		11,8	
			DIN EN ISO 13032:2012		12,3	
6	Mangangehalt	mg/l	DIN EN 16576:2015		2,2	
7	Flammpunkt	°C	DIN EN ISO 2719:2016	> 53		
8	Koksrückstand (von 10 % Destillations- rückstand) ^d	% (m/m)	DIN EN ISO 10370:2015		0,36	
9	Aschegehalt	% (m/m)	DIN EN ISO 6245:2003		0,013	
10	Wassergehalt	% (m/m)	DIN EN ISO 12937:2002		0,026	
11	Gesamtverschmutzung	mg/kg	DIN EN 12662:2008		28	
12	Korrosionswirkung auf Kupfer (3 h bei 50 °C) Korros		DIN EN ISO 2160:1999	1		
13	Fettsäure-Methylester- gehalt (FAME) ^e	% (V/V)	DIN EN 14078:2014		7,3	
14	Oxidationsstabilität	g/m³	DIN EN ISO 12205:1996		33	
		h	DIN EN 15751:2014	17,5		
15	Schmierfähigkeit,		DIN EN ISO 12156-1, Verfahren A		507	
	korrigierter "wear scar diameter"	μm	2008			
	(wsd 1,4) bei 60 °C		DIN EN ISO 12156-1, Verfahren B		513	

Nr.	Stoffeigenschaft	Einheit	Prüfverfahren	Ablehr gren:	Ablehnungs- grenzwert	
	_			min.	max.	
16	Viskosität bei 40 °C	mm²/s	DIN EN ISO 3104:1999	1,99	4,53	
17	Destillation ^f		DIN EN ISO 3405:2011			
	Volumenanteil, aufgefan- gen bei 250 °C	% (V/V)			67	
	Volumenanteil, aufgefan- gen bei 350°C	% (V/V)		81		
	95 % (V/V) aufgefangen bei	°C			365,5	
	Destillation ^g		DIN EN ISO 3924:2017			
	Volumenanteil, aufgefan- gen bei 250 °C	% (V/V)			67,5	
	Volumenanteil, aufgefan- gen bei 350 °C	% (V/V)		82,5		
	95 % (V/V) aufgefangen bei	°C			363	
18	CFPP	ô	DIN EN 116:2015			
	Klasse B				2	
	Klasse D				-8	
	Klasse F				-18	
	CFPP ^h	°C	DIN EN 16329:2013			
	Klasse B				1	
	Klasse D				-9	
	Klasse F				-18	

Anmerkungen:

- ^a Im Streitfall ist für die Bestimmung der Cetanzahl DIN EN ISO 5165 anzuwenden.
- ^b Im Streitfall ist DIN EN ISO 3675:1998 einzusetzen.
- $^{\circ}$ Im Streitfall ist für die Bestimmung des Schwefelgehaltes entweder DIN EN ISO 20846 oder DIN EN ISO 20884 anzuwenden.
- ^d Der Grenzwert für den Koksrückstand in der Tabelle 1 gilt für Produkte ohne zugesetzte Zündwilligkeitsverbesserer. Falls für einen Fertigkraftstoff ein höherer Wert ermittelt wird, ist DIN EN ISO 13759:1996 als Indikator für die Gegenwart von nitrathaltigen Komponenten anzuwenden. Für den Fall, dass dabei ein Zündwilligkeitsverbesserer nachgewiesen wird, ist der Grenzwert für den Koksrückstand für das geprüfte Produkt nicht anwendbar. Der Einsatz von Additiven befreit den Hersteller davon, die Anforderung von max. 0,30 % (m/m) Koksrückstand vor Zugabe von Additiven zu erfüllen.
- ^e FAME muss den Anforderungen nach DIN EN 14214:2012+A1:2014 entsprechen.
- ^f Zur Berechnung des Cetanindexes sind auch die Angaben für 10 %, 50 % und 90 % Volumenanteil erforderlich.
- ⁹ In Streitfällen bezüglich der Destillation ist DIN EN ISO 3405 anzuwenden.
- ^h In Streitfällen bezüglich des CFPP ist DIN EN 116 anzuwenden.